JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno.

Iron redox reactions play an important role in carbon remineralization, supporting large microbial communities in iron-rich terrestrial and aquatic sediments. Stratified water columns with comparably low iron concentrations are globally widespread, but microbial iron cycling in these systems has largely been ignored. We found evidence for unexpectedly high iron turnover rates in the low (1-2 µmol·l-1 ) iron waters of Lake Cadagno. Light-dependent, biological iron oxidation rates (1.4-13.8 µmol·l-1 ·d-1 ) were even higher than in ferruginous lakes with well-studied microbial iron cycles. This photoferrotrophic iron oxidation may account for up to 10% of total primary production in the chemocline. Iron oxides could not be detected and were presumably reduced immediately by iron-reducing microorganisms. Sequences of putative iron oxidizers and reducers were retrieved from in situ 16S rRNA gene amplicon libraries and some of these bacteria were identified in our enrichment cultures supplemented with Fe(II) and FeS. Based on our results, we propose a model in which iron is oxidized by photoferrotrophs and microaerophiles, and iron oxides are immediately reduced by heterotrophic iron reducers, resulting in a cryptic iron cycle. We hypothesize that microbial iron cycling may be more prevalent in water column redoxclines, especially those within the photic zone, than previously believed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app