Add like
Add dislike
Add to saved papers

Sequencing and de novo assembly of the Asian gypsy moth transcriptome using the Illumina platform.

The Asian gypsy moth (Lymantria dispar) is a serious pest of forest and shade trees in many Asian and some European countries. However, there have been few studies of L. dispar genetic information and comprehensive genetic analyses of this species are needed in order to understand its genetic and metabolic sensitivities, such as the molting mechanism during larval development. In this study, high-throughput sequencing technology was used to sequence the transcriptome of the Asian subspecies of the gyspy moth, after which a comprehensive analysis of chitin metabolism was undertaken. We generated 37,750,380 high-quality reads and assembled them into contigs. A total of 37,098 unigenes were identified, of which 15,901 were annotated in the NCBI non-redundant protein database and 9,613 were annotated in the Swiss-Prot database. We mapped 4,329 unigenes onto 317 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. Chitin metabolism unigenes were found in the transcriptome and the data indicated that a variety of enzymes was involved in chitin catabolic and biosynthetic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app