JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Catalytic Upstream Biorefining through Hydrogen Transfer Reactions: Understanding the Process from the Pulp Perspective.

ChemSusChem 2016 November 24
Catalytic upstream biorefining (CUB) encompasses processes for plant biomass deconstruction through the early-stage conversion of lignin by the action of a hydrogenation catalyst. CUB processes produce lignin as an extensively depolymerised product (i.e., a viscous lignin oil) and render highly delignified pulps. In this report, we examine CUB from the pulp perspective. Notably, Raney Ni plays an indirect role in the processes that occur within the lignocellulose matrix. As there are negligible points of contact between the poplar wood chips and Raney Ni, the catalyst action is limited to the species leached from the matrix into the liquor. Nevertheless, the substantial changes in the liquor composition (through the decomposition of carboxylic acids and H-transfer reductive processes on the lignin fragments) have significant implications for the pulp composition, degree of polymerisation and morphology. Compared with organosolv pulps, CUB pulps show higher xylan retention, higher delignification, and higher polymerisation degree. Moreover, the correlation between these properties and the performance of the enzymatic hydrolyses of CUB and organosolv pulps reveals that the high susceptibility of CUB pulps is mostly caused by their lower residual lignin contents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app