Add like
Add dislike
Add to saved papers

Insights into the Structure of Sulfolobus Nucleoid Using Engineered Sac7d Dimers with a Defined Orientation.

Biochemistry 2016 November 16
The structure of Archaeal chromatin or nucleoid is believed to have characteristics similar to that found in both eukaryotes and bacteria. Recent comparative studies have suggested that DNA compaction in Archaea requires a bridging protein (e.g., Alba) along with either a wrapping protein (e.g., a histone) or a bending protein such as Sac7d. While X-ray crystal structures demonstrate that Sac7d binds as a monomer to create a significant kink in duplex DNA, the structure of a multiprotein-DNA complex has not been established. Using cross-linked dimers of Sac7d with a defined orientation, we present evidence that indicates that Sac7d is able to largely coat duplex DNA in vivo by binding in alternating head-to-head and tail-to-tail orientations. Although each Sac7d monomer promotes a significant kink of nearly 70°, coated DNA is expected to be largely extended because of compensation of repetitive kinks with helical symmetry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app