Add like
Add dislike
Add to saved papers

A femtosecond transient absorption study of charge photogeneration and recombination dynamics in photovoltaic polymers with different side-chain linkages.

Nanoscale 2016 November 4
A pair of 9-arylidene-9H-fluorene and benzothiadiazole based, low-bandgap copolymers differing merely in the para or meta substitution of alkoxy groups to the arylidene linkages, i.e. p-PAFDTBT and m-PAFDTBT respectively, were comparatively investigated by using morphological characterization, ultrafast spectroscopy and quantum chemical calculations. Despite the subtle difference in the alkoxy substitution patterns, p-PAFDTBT molecules in photoactive films were shown to have a higher degree of crystallinity owing to the relatively less rotational torsion of the arylidene linkages. As a result, in either neat or fullerene-blended films, p-PAFDTBT compared to m-PAFDTBT gave rise to a substantially higher charge yield and much slower charge recombination. This work demonstrates that the alkoxy substitution pattern and the arylidene linkage are highly influencing on the morphology of the photoactive layers and thereby on the photovoltaic performance of the semiconducting copolymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app