JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microarray Studies on 211At Administration in BALB/c Nude Mice Indicate Systemic Effects on Transcriptional Regulation in Nonthyroid Tissues.

Targeted α-therapy is a promising treatment option for various types of malignant tumors. Radiolabeled cancer-seeking agents, however, undergo degradation, resulting in a certain percentage of free radionuclide in the body. The radiohalogen 211 At accumulates in various tissues, with specifically high uptake in the thyroid. When normal thyroid function is disturbed because of ionizing radiation (IR) exposure, deleterious effects can occur in tissues that depend on thyroid hormone (TH) regulation for normal physiologic function. However, knowledge of systemic effects is still rudimentary. We previously reported similarities in transcriptomic regulation between the thyroid and other tissues despite large differences in absorbed dose from 211 At. Here, we present supportive evidence on systemic effects after 211 At administration.

METHODS: Expression microarray data from the kidney cortex and medulla, liver, lungs, and spleen were used from previous studies in which mice were intravenously injected with 0.064-42 kBq of 211 At and killed after 24 h or injected with 1.7 kBq of 211 At and killed after 1, 6, or 168 h. Controls were mock-treated and killed after 24 h. Literature-based gene signatures were used to evaluate the relative impact from IR- or TH-induced regulation. Thyroid- and TH-associated upstream regulators as well as thyroid-related diseases and functions were generated using functional analysis software.

RESULTS: Responses in IR- or TH-associated gene signatures were tissue-specific and varied over time, and the relative impact of each gene signature differed between the investigated tissues. The liver showed a clear dominance of TH-responding genes. In the kidney cortex, kidney medulla, and lungs, the TH-associated signature was detected to at least an extent similar to the IR-associated signature. The spleen was the single tissue showing regulation of only IR-associated signature genes. Various thyroid-associated diseases and functions were inferred from the data: L-triiodothyronine, TH, TH receptor, and triiodothyronine (reverse) were inferred as upstream regulators with differences in incidence and strength of regulation depending on tissue type.

CONCLUSION: These findings indicate that transcriptional regulation in various nonthyroid tissues was-in part-induced by thyroid (hormone)-dependent signaling. Consideration of the systemic context between tissues could contribute to normal tissue risk assessment and planning of remedial measures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app