JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Mechanistic insights into the manganese-dependent phosphodiesterase activity of yeast Dbr1 with bis-p-nitrophenylphosphate and branched RNA substrates.

RNA 2016 December
Saccharomyces cerevisiae Dbr1 is a manganese-dependent RNA debranching enzyme that cleaves the 2'-5' phosphodiester bond of the lariat introns formed during pre-mRNA splicing. Dbr1 is a member of the binuclear metallophosphoesterase enzyme superfamily. We showed previously via alanine scanning that RNA debranching in vivo and in vitro depends on conserved active site residues His13, Asp40, Asn85, His86, His179, His231, and His233. Here, by extending the alanine scan, we added Cys11 to the ensemble of essential active site components. We report that Dbr1 has a vigorous manganese-dependent phosphodiesterase activity with the non-RNA substrate bis-p-nitrophenylphosphate. Whereas RNA debranching requires His86, bis-p-nitrophenylphosphatase activity does not. We interpret these and other structure-activity relations reported here in light of the crystal structures of Entamoeba Dbr1 and other homologous binuclear metallophosphodiesterases. Our results suggest that (i) Dbr1 adheres to the two-metal mechanism of the enzyme superfamily, but is distinguished by its reliance on a Cys11-Xaa-His13 motif to engage one of the catalytic metals instead of the Asp-Xaa-His element typical of other clades within the superfamily; (ii) His86 is a general acid catalyst that protonates the O2' leaving group of the RNA 2'-5' phosphodiester; and (iii) the favorable pKa of p-nitrophenol elides the strict need for a general acid during hydrolysis of bis-p-nitrophenylphosphate. The Dbr1 bis-p-nitrophenylphosphatase activity is well suited for high-throughput screening for inhibitors of debranching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app