Add like
Add dislike
Add to saved papers

Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion.

Pseudomonas putida KT2440 is a saprophytic, generally recognized as safe microorganism that plays important roles in the biodegradation and production of value-added chemicals. Chromosomal gene deletion of P. putida KT2440 usually involves time-consuming gene coning, conjugal transfer and counterselection. Recently, we developed a P. putida KT2440 markerless gene deletion method based on recombineering and Cre/loxP site-specific recombination. PCR-based λ Red recombineering circumvents the tedious cloning steps and is more amenable to high-throughput manipulation. Herein we report an improved scarless gene deletion strategy based on recombineering and I-SceI-mediated double-strand break repair. Sixteen drug exporter gene(s) were deleted and the minimal inhibition concentrations of the mutants to a variety of antibiotics were determined. The robustness of the procedure was also demonstrated by sequential deletion of five large genomic regions. Up to 59% recombination efficiency was achieved for 54.8 kb deletion, and the efficiency of RecA mediated double-strand break repair, which was boosted by λ Red recombinase, was nearly 100%. The strain with a 3.76% genome reduction showed an improved growth rate and transformation efficiency. The straightforward, time-saving and highly efficient scarless deletion approach has the potential to facilitate the genetic study and biotechnological and environmental applications of P. putida KT2440.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app