Add like
Add dislike
Add to saved papers

Comparative study of two single CRD C-type lectins, CgCLec-4 and CgCLec-5, from pacific oyster Crassostrea gigas.

C-type lectins (CTLs), a superfamily of Ca2+ -dependent carbohydrate-recognition proteins, are involved in nonself-recognition and pathogen elimination, and play crucial roles in the innate immunity. In the present study, two single CRD C-type lectins, CgCLec-4 and CgCLec-5, were identified from oyster Crassostrea gigas. The open reading frame (ORF) of CgCLec-4 and CgCLec-5 encoded polypeptides of 152 and 150 amino acids, respectively. Both CgCLec-4 and CgCLec-5 contained one CRD with six conserved cysteines to form three disulfide bridges. The motif in Ca2+ -binding site 2 of CgCLec-4 was QPE, while it was QYE, a non-a typical motif in CgCLec-5. CgCLec-4 was a secreted lectin with a signal peptide which was highly expressed in hepatopancreas, mantle and hemocytes. CgCLec-5 was an intracellular lectin which was mostly expressed in hemocytes. The lipopolysaccharide stimulation could induce the expressions of CgCLec-4 and CgCLec-5. The recombinant proteins of CgCLec-4 and CgCLec-5 (rCgCLec-4 and rCgCLec-5) could bind to various PAMPs including LPS, PGN, GLU and mannan, while the binding affinity of rCgCLec-5 was stronger than that of rCgCLec-4. Meanwhile, rCgCLec-4 and rCgCLec-5 could bind to different kinds of microorganisms, including Staphylococcus aureus, Escherichia coli and Vibro anguillarum and Yarrowia lipolytica, and the microbial agglutinating ability of rCgCLec-4 was stronger than that of CgCLec-5. Moreover, rCgCLec-4 exhibited anti-microbial activity against bacteria and fungi, but anti-microbial activity of CgCLec-5 was not obvious. All these results suggested that CgCLec-4 and CgCLec-5 could function as an important PRR involved in immune defense against invading pathogen in oyster, and the diversity and complexity of motifs in Ca2+ binding site 2 in CRDs determined their comprehensive recognition spectrum and multiple immune functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app