Add like
Add dislike
Add to saved papers

1,2,4-Triazolidine-3-thiones Have Specific Activity against Acinetobacter baumannii among Common Nosocomial Pathogens.

ACS Infectious Diseases 2017 January 14
Acinetobacter baumannii are Gram-negative bacilli that pose a constant threat to susceptible patients because of increased resistance to multiple antibiotics and persistence in the hospital environment. After genome analysis, we discovered that A. baumannii harbors genes that share homology to an enzymatic pathway that elongates long-chain fatty acids (LCFA) in fungi. Previously, 1,2,4-triazolidine-3-thiones (T-3-Ts) were shown to inhibit hyphae production in fungi, and this same LCFA elongation pathway was implicated as the possible target. Therefore, we investigated if T-3-Ts also have activity against multidrug-resistant A. baumannii. Surprisingly, all of the clinical isolates of A. baumannii that were tested have susceptibility to ECC145 and ECC188 with MIC90 values of 8.0 μg/mL. In contrast, reference strains and clinical isolates of other common nosocomial bacteria that lack the LCFA pathway also lacked susceptibility. Time-kill experiments revealed that both ECC145 and ECC188 have a bacteriostatic effect against A. baumannii. Mass spectrometry analysis suggested that exposure to T-3-Ts resulted in less LCFA production. Supplementation of media with either 0.02% w/v oleic or linoleic acid abrogated the bacteriostatic effect of the compounds, which again implicated LCFA elongation as the target. Our results suggest these molecules could be a promising start to further exploit what appears to be an important aspect of A. baumannii membrane function and integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app