Add like
Add dislike
Add to saved papers

6-Methoxyflavanone attenuates mechanical allodynia and vulvodynia in the streptozotocin-induced diabetic neuropathic pain.

BACKGROUND: Diabetic neuropathy is the most prevalent, persistent and debilitating complication of diabetes mellitus often coupled with vulvodynia that may present as an isolated symptom or as a part of constellation of other neuropathic abnormalities.

OBJECTIVE: Flavonoids have selective affinity for GABA receptors and 6-methoxyflavanone (6-MeOF) is a positive allosteric modulator of GABA responses at human recombinant GABAA receptors. GABAergic and opioidergic system inhibition have been shown to facilitate neuropathic pain.

METHODS: 6-MeOF was evaluated for analgesic effect in the hot plate test and streptozotocin-induced diabetic neuropathic pain in female rats using von Frey hairs. The possible involvement of opioidergic and GABAergic mechanisms was investigated using naloxone and pentylenetetrazole (PTZ) antagonists, respectively. The biodistribution of 6-MeOF in plasma and CNS was examined using a validated HPLC/UV analytical method. The binding affinity of 6-MeOF with opioid and GABA receptors was studied using molecular docking simulation approach.

RESULTS: 6-MeOF (10 and 30mg/kg) attenuated the acute phasic thermal nociception in the hot plate test while in the case of streptozotocin-induced diabetic neuropathy model, 6-MeOF (10 and 30mg/kg) produced static/dynamic anti-allodynic (increased paw withdrawal threshold and latency) as well as static/dynamic anti-vulvodynic effects (increased flinching response threshold and latency), when compared to the vehicle and standard gabapentin (75mg/kg). In silico studies depicted the preference of 6-MeOF for the delta- and kappa-opioid and GABAA receptors. Moreover, the pharmacokinetic profile revealed a quick appearance of 6-MeOF in the systemic circulation and brain areas with maximum concentration observed after 30min in the amygdala, brain stem and cerebral cortex.

CONCLUSION: 6-MeOF readily crosses the blood brain barrier and may be effective in attenuating the diabetes-induced allodynia as well as vulvodynia, probably through interactions with the GABAergic and opioidergic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app