Add like
Add dislike
Add to saved papers

Suspension Electrodes Combining Slurries and Upflow Fluidized Beds.

ChemSusChem 2016 November 10
Carbon-based suspension electrodes are currently intensively investigated for emerging electrochemical systems, such as flow batteries, flow capacitors, and capacitive deionization cells. The main limitation of such electrodes is their low electric conductivity, which is typically orders of magnitude lower than that of traditional static carbon electrodes. Two main categories of suspension electrodes exist: 1) slurry electrodes where particles are not significantly affected by gravity, and 2) fluidized bed electrodes where particles are affected by gravity. We introduce a novel category that we term "combined" suspension electrodes, which combine dilute slurries and dense fluidized beds. We present experimental measurements of the electrochemical impedance and electric conductivity of two combined electrodes. For one set of materials, the measured electric conductivity of the combined electrode is at least an order of magnitude above the fluidized bed and slurry components alone, demonstrating that a synergetic effect can be achieved when adding dilute slurry to dense fluidized bed. For a second set of materials, results show that the combined electrode conductivity is lower than the slurry component alone, a counter-intuitive result, demonstrating that increasing electrode carbon loading does not always enhance the electric conductivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app