JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

miR-22 Inhibits CD34 + Cell Expansion Through Decreasing β-Catenin in Osteoblasts.

Human Gene Therapy 2017 January
The bone marrow (BM) microenvironment, heavily composed of osteoblasts, plays a key role during the normal development of hematopoiesis. Endogenous miR-22 has an important function in the hematopoietic development and osteoblastic differentiation. It is unclear whether miR-22 in osteoblasts from the BM microenvironment also has an important function in the development of hematopoiesis. This study found that the capacity of hTERT-transduced fetal bone marrow osteoblasts (FBMOB-hTERT) cells to expand human cord blood (CB) CD34+ cells and maintain the multipotency of CB CD34+ cells is decreased upon ectopic expression of miR-22. Further experiments revealed that with the existence of CB CD34+ cells, the expression of β-catenin in FBMOB-hTERT cells is decreased upon ectopic expression of miR-22. The reduced ability of FBMOB-hTERT cells to expand human CB CD34+ cells and maintain the multipotency of CB CD34+ cells upon ectopic miR-22 was partly rescued by overexpression of β-catenin. The study indicated that the ability of osteoblasts to expand human CB CD34+ cells and maintain the multipotency of CB CD34+ cells is decreased upon ectopic expression of miR-22. The decreased expression of β-catenin is, at least partly, responsible for the reduced ability of osteoblasts for expanding and supporting CB CD34+ cells upon ectopic expression of miR-22.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app