Add like
Add dislike
Add to saved papers

Fibrin nanostructures for biomedical applications.

Physiological Research 2016 October 21
Fibrin is a versatile biopolymer that has been extensively used in tissue engineering. In this paper fibrin nanostructures prepared using a technique based on the catalytic effect of fibrin-bound thrombin are presented. This technique enables surface-attached thin fibrin networks to form with precisely regulated morphology without the development of fibrin gel in bulk solution. Moreover, the influence of changing the polymerization time, along with the antithrombin III and heparin concentrations on the morphology of fibrin nanostructures was explored. The binding of bioactive molecules (fibronectin, laminin, collagen, VEGF, bFGF, and heparin) to fibrin nanostructures was confirmed. These nanostructures can be used for the surface modification of artificial biomaterials designed for different biomedical applications (e.g. artificial vessels, stents, heart valves, bone and cartilage constructs, skin grafts, etc.) in order to promote the therapeutic outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app