Add like
Add dislike
Add to saved papers

The Pattern of Elastic Fiber Breakdown in Bleomycin-Induced Pulmonary Fibrosis May Reflect Microarchitectural Changes.

Lung 2017 Februrary
INTRODUCTION: Desmosine and isodesmosine (DID) are unique elastin crosslinks that may serve as biomarkers for elastic fiber degradation in chronic obstructive pulmonary disease. Previously, our laboratory found that the ratio of free to peptide-bound DID in bronchoalveolar lavage fluid (BALF) showed a significant positive correlation with the extent of airspace enlargement in an elastase model of pulmonary emphysema. To further evaluate this hypothesis, our laboratory measured this ratio in a bleomycin (BLM) model of pulmonary fibrosis, which involved different microarchitectural changes than those associated with pulmonary emphysema.

METHODS: Syrian hamsters were instilled intratracheally with 1.0 unit BLM in 0.2 ml of normal saline (controls received the vehicle alone), and BALF was analyzed for both free and total DID, using a combination of liquid chromatography and tandem mass spectrometry.

RESULTS: Total BALF DID was significantly increased in hamsters receiving BLM at 1 week post-treatment (92 vs 13 pg/ml; p < 0.001), consistent with elastic fiber degradation. However, in contrast to elastase-induced emphysema, free/bound DID was lower in BLM-treated animals compared to controls at both 1 week (0.76 vs 0.84) and 2 weeks post-treatment (0.69 vs 0.86), though the differences were not statistically significant.

CONCLUSIONS: These results indicate that it may be possible to identify specific pulmonary microarchitecture changes, based on the ratio of free to peptide-bound DID. It is speculated that the proportionate decrease in free DID in BLM-induced fibrosis may be due to preservation of intact elastic fibers as the lung injury progresses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app