Add like
Add dislike
Add to saved papers

Biological arsenite oxidation with nitrate as sole electron acceptor.

The potential of anoxic biological arsenite oxidation with nitrate as the sole electron acceptor was tested by using the acclimatized activated sludge which was chronically exposed under arsenite and nitrate coexisted aquatic environment. The activated sludge cultivated in a sequencing batch reactor was fed with arsenite and nitrate as the main substrates over six months. A series of batch experiments were conducted with acclimated sludge. Results showed that no obvious inhibition was observed in the anoxic arsenite oxidation linked to nitrate and nitrite reduction at the concentration of arsenite up to 35 mg As(III) L(-1). Moreover, it was found that nitrite was accumulated over the reaction probably due to limited availability of arsenite. The kinetic study further suggested that the maximum specific arsenite oxidation rates (qobs, max) with nitrate and nitrite as the electron acceptors were found to be 0.55 ± 0.10 mg As(III) g(-1)VSS min(-1) and 0.40 ± 0.04 mg As(III) g(-1)VSS min(-1), respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app