Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time.

Biomaterials 2017 January
The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app