Add like
Add dislike
Add to saved papers

Estradiol Reduces Connexin43 Gap Junctions in the Uterus during Adenomyosis in Cows.

Adenomyosis is defined as the presence of glandular foci external to the endometrium of the uterus, either in the myometrium or/and perimetrium, depending on the progress of this dysfunction. To date, we showed that steroids secretion and prolactin expression and proliferative processes are disturbed during uterine adenomyosis in cows. During endometriosis in eutopic endometrium in women, gap junctions are down regulated. The transmembrane gap junction protein, connexin (Cx43) is necessary for endometrial morphological, biochemical and angiogenic functions. The aim of this study is recognition of adenomyosis etiology by determination of the role of Cx43 in this process. Immunolocalization and comparison of Cx43 mRNA and protein expression in healthy (N=9) and adenomyotic uterine tissue (N=9), and Cx43 mRNA expression (real time PCR) in uterine stromal - myometrium co-culture under 24-hour stimulation with 17-beta estradiol (10-7M) isolated from healthy (N=5) and adenomyotic (N=5) cows were determined. Cx43 was localized in healthy and adenomyotic uteri. mRNA and protein expression was down-regulated in uterine tissue in adenomyotic compared with healthy cows (p<0.05). Estradiol stimulated Cx43 mRNA expression in myometrial cell culture and co-culture of stromal and myometrial cells in adenomyotic compared with healthy cows (p<0.05). In summary, down-regulation of Cx43 expression in the junction zone might play an important role in pathogenesis of adenomyosis. Estradiol modulates gap junctions during adenomyosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app