Add like
Add dislike
Add to saved papers

Mechanistic Studies of TiO 2 Photocatalysis and Fenton Degradation of Hydrophobic Aromatic Pollutants in Water.

HO-adduct radicals have been investigated and confirmed as the common initial intermediates in TiO2 photocatalysis and Fenton degradations of water-insoluble aromatics. However, the evolution of HO-adduct radicals to phenols has not been completely clarified. When 4-d-toluene and p-xylene were degraded by TiO2 photocatalysis and Fenton reactions, respectively, a portion of the 4-deuterium or 4-CH3 group (18-100 %) at the attacked ipso position shifted to the adjacent position of the ring in the formed phenols (NIH shift; NIH is short for the National Institutes of Health, to honor the place where this phenomenon was first discovered). The results, combined with the observation of a key dienyl cationic intermediate by in situ attenuated total reflectance FTIR spectroscopy, indicate that, for the evolution of HO-adduct radicals, a mixed mechanism of both the carbocation intermediate pathway and O2 -capturing pathway occurs in both aqueous TiO2 photocatalysis and aqueous Fenton reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app