JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Balancing the Interactions of Mg 2+ in Aqueous Solution and with Nucleic Acid Moieties For a Polarizable Force Field Based on the Classical Drude Oscillator Model.

Mg2+ ions are important in biological systems, particularly in stabilizing compact RNA folds. Mg2+ is strongly polarizing, and representing its interactions in heterogeneous environments is a challenge for empirical force field development. To date, the most commonly used force fields in molecular dynamics simulations utilize a pairwise-additive approximation for electrostatic interactions, which cannot account for the significant polarization response in systems containing Mg2+ . In the present work, we refine the interactions of Mg2+ with water, Cl- ions, and nucleic acid moieties using a polarizable force field based on the classical Drude oscillator model. By targeting gas-phase quantum mechanical interaction energies and geometries of hydrated complexes, as well as condensed-phase osmotic pressure calculations, we present a model for Mg2+ that yields quantitative agreement with experimental measurements of water dissociation free energy and osmotic pressure across a broad range of concentrations. Notable is the direct modeling of steric repulsion between the water Drude oscillators and Mg2+ to treat the Pauli exclusion effects associated with overlap of the electron clouds of water molecules in the first hydration shell around Mg2+ . Combined with the refined interactions with nucleic acid moieties, the present model represents a significant advancement in simulating nucleic acid systems containing Mg2+ .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app