Add like
Add dislike
Add to saved papers

Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water.

Nanotechnology 2016 November 19
The increasing power density and the decreasing dimensions of transistors present severe thermal challenges to the design of modern microprocessors. Furthermore, new technologies such as three-dimensional chip-stack architectures require novel cooling solutions for their thermal management. Here, we demonstrate, through transient heat-dissipation simulations, that a covalently bonded graphene-carbon nanotube (G-CNT) hybrid immersed in water is a promising solution for the ultrafast cooling of such high-temperature and high heat-flux surfaces. The G-CNT hybrid offers a unique platform to integrate the superior axial heat transfer capability of individual CNTs via their parallel arrangement. The immersion of the G-CNT in water enables an additional heat dissipation path via the solid-liquid interaction, allowing for the sustainable cooling of the hot surface under a constant power input of up to 10 000 W cm-2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app