Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale.

Ecology Letters 2016 December
Nutrient limitation is pervasive in the terrestrial biosphere, although the relationship between global carbon (C) nitrogen (N) and phosphorus (P) cycles remains uncertain. Using meta-analysis we show that gross primary production (GPP) partitioning belowground is inversely related to soil-available N : P, increasing with latitude from tropical to boreal forests. N-use efficiency is highest in boreal forests, and P-use efficiency in tropical forests. High C partitioning belowground in boreal forests reflects a 13-fold greater C cost of N acquisition compared to the tropics. By contrast, the C cost of P acquisition varies only 2-fold among biomes. This analysis suggests a new hypothesis that the primary limitation on productivity in forested ecosystems transitions from belowground resources at high latitudes to aboveground resources at low latitudes as C-intensive root- and mycorrhizal-mediated nutrient capture is progressively replaced by rapidly cycling, enzyme-derived nutrient fluxes when temperatures approach the thermal optimum for biogeochemical transformations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app