Add like
Add dislike
Add to saved papers

An accurate multi-channel multi-reference full-dimensional global potential energy surface for the lowest triplet state of H 2 O 2 .

The lowest triplet state of the H2 O2 system features multiple reaction channels, including several relevant to the combustion of H2 . To accurately map out the global potential energy surface, ∼28 000 geometries were sampled over a large configuration space including all important asymptotes, and electronic energies at these points were calculated at the level of the explicitly correlated version of the multi-reference configuration interaction (MRCI-F12) method. A new multi-channel global potential energy surface was constructed by fitting the ab initio data set using a permutation invariant polynomial-neural network method, resulting in a total root mean square fitting error of only 6.7 meV (0.15 kcal mol-1 ). Various kinetics and dynamical properties of several relevant reactions were calculated on the new MRCI potential energy surface, and compared with the available experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app