Add like
Add dislike
Add to saved papers

Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.

ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app