Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transport and Organization of Cholesterol in a Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate.

Understanding the transport behavior of the cholesterol molecules within a cell membrane is a key challenge in cell biology at present. Here, we have applied sum frequency generation vibrational spectroscopy to characterize the transport and organization of cholesterol in different kinds of planar solid-supported lipid bilayers by combining achiral- and chiral-sensitive polarization measurements. This method allows us to distinguish the organization of cholesterol in tail-to-tail, head-to-tail, head-to-head, and side-by-side manners. It is found that the movement of cholesterol in the lipid bilayer largely depends on the flip-flop rate of the phospholipid. The flip-flop dynamics of the phospholipid and cholesterol are synchronous. In the solid-supported zwitterionic phosphocholine lipid bilayer, the cholesterol molecules flip quickly from the distal leaflet to the neutral proximal leaflet of the bilayer and form tail-to-tail organization on both leaflets. The phosphocholine lipid and cholesterol show the same flip-flop rate. However, when the proximal leaflet is prepared using negative glycerol phospholipids, cholesterol organizes itself by mainly forming an α-β structure on the distal leaflet. Because of the strong interaction between the glycerol phospholipid and the substrate, no or only partial cholesterol molecules flip from the distal leaflet to the negatively charged proximal leaflet. However, the cholesterol molecules undergo flip-flop in the presence of salt solution because the ions weaken the interaction between the negative phospholipid and the substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app