JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Antifouling Zwitterionic Coating via Electrochemically Mediated Atom Transfer Radical Polymerization on Enzyme-Based Glucose Sensors for Long-Time Stability in 37 °C Serum.

In this study, a versatile fabrication method for coating enzyme-based biosensors with ultrathin antifouling zwitterionic polymer films to meet the challenge of the long-time stability of sensors in vivo was developed. Electrochemically mediated atom transfer radical polymerization (eATRP) was applied to polymerize zwitterionic sulfobetaine methacrylate monomers on the rough enzyme-absorbed electrode surfaces; meanwhile, a refined overall bromination was developed to improve the coverage of polymers on the biosensor surfaces and to maintain the enzyme activity simultaneously for the first time. X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize the properties of the polymer layers. The antifouling performance and long-time stability in 37 °C undiluted bovine serum in vitro were evaluated. The results showed that the polymer brush coatings diminished over 99% nonspecific protein adsorption and that the sensitivity of the evaluated sensor was maintained at 94% after 15 days. The overall sensitivity deviation of 7% was nearly 50% lower than that of the polyurethane-coated ones and also much smaller than the current commercially available glucose biosensors. The results suggested that this highly controllable electrodeposition procedure could be a promising method to develop implantable biosensors with long-time stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app