Add like
Add dislike
Add to saved papers

Enabling Multiple Conjugation to Oligonucleotides Using "Click Cycles".

Bioconjugate Chemistry 2016 November 17
An efficient method for the synthesis of multiply functionalized oligonucleotides (ONs) utilizing a novel H-phosphonate alkyne-based linker for multiple functionalization (LMF) is developed. The strategy allows for the conjugation of various active entities to oligonucleotide through the postsynthetic attachment of LMF at the 5'-terminus of ONs using H-phosphonate chemistry followed by conjugation of various entities via [3 + 2] copper(I) catalyzed cycloaddition in a stepwise manner. Each cycle is composed of attachment of the LMF followed by a click reaction with azido-containing units. Sequential solid-phase synthesis of oligonucleotide conjugates containing three attached entities was performed using an acetylated form of MIF peptide conjugated to azido linker, achieving high conversions at each unit addition. In addition, to show the versatility of the method, oligonucleotide conjugates with several different classes of compounds were synthesized. Each conjugate containing three different entities, whose structure and function varied (e.g., sugars, peptides, fluorescent labels, and m3G-Caps).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app