Add like
Add dislike
Add to saved papers

Kinematics and load-sharing of an anterior thoracolumbar spinal reconstruction construct with PEEK rods: An in vitro biomechanical study.

Clinical Biomechanics 2016 December
BACKGROUND: Polyetheretherketone rod constructs provide adequate spinal stability. Kinematics and load sharing of anterior thoracolumbar reconstruction with polyetheretherketone rods under preload remains unknown.

METHODS: Eight human cadaveric specimens (T11-L3) were subjected to a pure moment of 5.0Nm in flexion-extension, lateral bending and axial rotation, and flexion-extension with a compressive preload of 300N. An anterior reconstruction of L1 corpectomy was conducted with a surrogate bone graft and anterior rod constructs (polyetheretherketone or titanium rods). An axial load-cell was built in the surrogate bone graft to measure the compressive force in the graft. Range of motion, neutral zone and compressive force in the graft were compared between constructs.

FINDINGS: The polyetheretherketone rod construct resulted in more motion than the titanium rod construct, particularly in extension (P=0.011) and axial rotation (P=0.001), but less motion than the intact in all directions except in axial rotation. There was no difference in range of motion or neutral zone between constructs in flexion-extension under preload. The polyetheretherketone rod construct kept the graft compressed 52N which was similar to the titanium rod construct (63N), but allowed the graft compressed more under the preload (203N vs. 123N, P=0.003). The compressive forces fluctuated in flexion-extension without preload, but increased in flexion and decreased in extension under preload.

INTERPRETATION: The polyetheretherketone rod construct allowed more motion compared to the titanium rod construct, but provided stability in flexion and lateral bending without preload, and flexion and extension under preload. The anterior graft shared higher load under preload, particularly for the polyetheretherketone rod construct. The results of this study suggest that rigidity of rods in the anterior reconstruction affects kinematic behavior and load sharing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app