Add like
Add dislike
Add to saved papers

Trafficking mechanism of bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma HepG2 cells by modulating Endoglin, CXCR4 and TGF-β.

Mesenchymal stem cells (MSCs) display differential migration ability toward different tumor-released factors. Migration of MSCs is highly important in induction of proliferation and invasiveness of hepatocellular carcinoma (HepG2) cells. In this study, the role of CXCR4/CXCL12 axis and TGF-βR signaling were evaluated in the migration of MSCs toward HepG2 cells. The MSCs were incubated with SDF-1α (CXCL12), antagonists of CXCR4, TGF-βR, and co-receptor of TGF-β, (endoglin) for 48h. Then, the migration of these cells toward HepG2 cells was analyzed using in vitro migration assay. SDF-1α at a concentration of 100nM MSCs revealed the highest migration rate toward the conditioned medium (1.62 fold compared to the migration of un-treated MSCs; p<0.05). Applying combination of the antagonists against CXCR4, TGF- βR, and co-receptor of TGF-β decreased the migration rate significantly (4.51 fold; p<001). Western blot analysis confirmed that RhoA activity is a core modulator in migration pathway. This study demonstrated that CXCR4 and TGF-βR signaling are important for migration of MSCs toward HepG2 cells. Identifying the key mediators in the migration of MSCs toward hepatocellular carcinoma cells and then development of the therapeutic inhibitors against these factors can be considered as an essential strategy in suppression of tumor progression and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app