JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Self-Assembly Behavior of Ultrahighly Charged Amphiphilic Polyelectrolyte on Solid Surfaces.

The adsorption process of a geminized amphiphilic polyelectrolyte, comprising double elementary charges and double hydrophobic tails in each repeat unit (denoted as PAGC8 ), was investigated and characterized by means of quartz crystal microbalance with dissipation (QCM-D), ellipsometry, and atomic force microscopy (AFM). By comparison, the self-assembly behaviors of a traditional polyelectrolyte without hydrophobic chains (denoted as PASC1 ) and an amphiphilic polyelectrolyte with a single hydrophilic headgroup and hydrophobic tail in each repeat unit (denoted as PASC8 ) at the solid/liquid interface were also investigated in parallel. A two-regime buildup was found in both amphiphilic systems of PASC8 and PAGC8 , where the first regime was dependent on electrostatic interactions between polyelectrolytes and oppositely charged substrates, and the rearrangements of the preadsorbed chains and their aggregation behaviors on surface dominated the second regime. Furthermore, it was found that the adsorbed amount and conformation changed as a function of the charge density and bulk concentrations of the polyelectrolytes. The comparison of the adsorbed mass obtained from QCM-D and ellipsometry allowed calculating the coupling water content which reached high values and indicated a flexible aggregate conformation in the presence of PAGC8 , resulting in controlling the suspension stability even at an extremely low concentration. In order to provide an insight into the mechanism of the suspension stability of colloidal dispersions, we gave a further explanation with respect to the interactions between surfaces in the presence of the geminized polyelectrolyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app