JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrogen-Bonding-Induced Fluorescence: Water-Soluble and Polarity-Independent Solvatochromic Fluorophores.

Fluorophores with emission wavelengths that shift depending on their hydrogen-bonding microenvironment in water would be fascinating tools for the study of biological events. Herein we describe the design and synthesis of a series of water-soluble solvatochromic fluorophores, 2,5-bis(oligoethylene glycol)oxybenzaldehydes (8-11) and 2,5-bis(oligoethylene glycol)oxy-1,4-dibenzaldehydes (14-17), based on a push-pull strategy. Unlike typical examples in this class of fluorophores, the fluorescence properties of these compounds are independent of solvent polarity and become fluorescent upon intermolecular hydrogen-bonding, exhibiting high quantum yields (up to ϕ = 0.55) and large Stokes shifts (up to 134 nm). Furthermore, their emission wavelengths change depending on their hydrogen-bonding environment. The described fluorophores provide a starting point for unprecedented applications in the fields of chemical biology and medicinal chemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app