JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Photochemistry of Carboxylate on TiO 2 (110) Studied with Synchrotron Radiation Photoelectron Spectroscopy.

We present a dedicated synchrotron radiation photoelectron spectroscopy (SR-PES) study of a photochemical reaction on the surface of rutile TiO2 (110). The photoreaction kinetics of carboxylate species (trimethyl acetate, TMA) upon irradiation by UV and soft X-rays were monitored, and we show that it is possible to control the reaction rates from UV light and soft X-rays independently. We directly observe Ti4+ → Ti3+ conversion upon irradiation, attributed to electron trapping at Ti sites close to surface OH groups formed by deprotonation of the parent molecule, trimethylacetic acid (TMAA). TMA photolysis on two surface preparations with different oxygen vacancy densities shows that the vacancy-related charge quenches the amount of charge that can be trapped at hydroxyls upon irradiation. During the initial stages of reaction the correlation between the amount of photodepleted TMA and the amount of charge trapped in the Ti 3d band gap state is nearly 1:1. A first-order kinetics analysis reveals that the reaction rate decreases with decreasing TMA coverage. There is also a coverage-dependent difference in the electronic structure of TMA moieties, primarily involving the carboxyl anchor group. These changes are consistent with a decreased hole affinity of the adsorbed TMA and hence a decreased reaction rate. This discovery adds to the previously presented picture of a reactivity that is inversely proportional to the number of surface hydroxyls, suggesting that the balance between the amounts of TMA, OH, and trapped charge needs to be considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app