JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid visualization of macromolecular orientation by discrete frequency mid-infrared spectroscopic imaging.

Analyst 2016 December 20
Infrared (IR) spectroscopic imaging has been used to measure the composition and orientation of polymeric systems for decades. IR microscopy can provide detailed views of microscopic regions, allowing the observation of both morphology and molecular properties of a sample, but involves a trade-off between the spatial extent and details of molecular content. Here we describe an approximately two orders of magnitude faster approach to measure the spherulitic structure and molecular orientation in large semi-crystalline polymer samples compared to extant Fourier transform infrared (FT-IR) spectroscopic imaging. This discrete frequency approach utilizes individual narrowband emission lines of a quantum cascade laser (QCL) source to spectrally image large areas rapidly. The inherent polarization of the laser beam is employed to measure orientation, enabling calculation of Hermans in-plane orientation function along with molecular chain angles distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app