Add like
Add dislike
Add to saved papers

Nanoarchitectonics of Small Molecule and DNA for Ultrasensitive Detection of Mercury.

Reliable and ultrasensitive detection of mercury ions is of paramount importance for toxicology assessment, environmental protection, and human health. Herein, we present a novel optoelectronic approach based on nanoarchitectonics of small-molecule templated DNA system that consists of an adenine (A)-conjugated small organic semiconductor (BNA) and deoxyribo-oligothymidine (dTn ). This mutually templated dynamic chiral coassembly system (BNAn-dTn ) with tunable chiroptical, morphological, and electrical properties is tapped in to enable ultrasensitive and selective detection of inorganic and organometallic mercury in water. We observe a rapid transformation of the BNAn -dTn coassembly into a metallo-DNA duplex [dT-Hg-dT]n in the presence of mercury, which is utilized for a chiro-optical and conductivity-based rapid and subnanomolar sensitivity (≥0.1 nM, 0.02 ppb) to mercury ions in water (∼100 times lower than United States Environmental Protection Agency tolerance limit). This ultrasensitive detection of inorganic and organometallic mercury is driven by a novel chemical design principle that allows strong mercury thymine interaction. This study is anticipated to inspire the development of future templated DNA nanotechnology-based optoelectronic devices for the rapid and ultrasensitive detection of numerous other toxic analytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app