Add like
Add dislike
Add to saved papers

The Redox-Active Chromium Phthalocyanine System: Isolation of Five Oxidation States from Pc 4- Cr I to Pc 2- Cr III .

The preparation and structural characterization of a series of chromium phthalocyanine complexes with multiple metal and ring oxidation states were achieved using PcCrII (1) (Pc=phthalocyanine) or PcCrII (THF)2 (1⋅THF2 ) as starting materials. The reaction of soluble 1⋅THF2 with Br2 or I2 gave the PcCrIII halide complexes PcCrX(THF) (X=I/I3 , Br; 3, 4, respectively). Treatment of 1 with 0.5 equivalent of PhIO or air generated the dinuclear [PcCr(THF)]2 (μ-O) (5), whereas the addition of one equivalent of AgSbF6 to 1 resulted in oxidation to THF-solvated octahedral [PcCrIII (THF)2 ]SbF6 (6). The reduction of 1 with three sequential equivalents of KEt3 BH resulted in the isolation of [K(DME)4 ][Pc3- CrII ] (7), [K(DME)4 ]2 [Pc4- CrII ] (8) and [K6 (DME)4 ][Pc4- CrI ]2 (9), respectively. The reduced products are deep purple in colour, with visible absorption maxima between 500-580 nm. The ring-reduced complexes 7 and 8 are monomeric, whereas 9 is a 1D chain of dinuclear [PcCr]2 units with intercalated K+ cations and supported by Cr-Cr interactions of 2.988(2) Å. Addition of four equivalents of KC8 resulted in the demetallated product PcK2 (DME)4 (10), which has a 1D chain structure. The isolation and structural characterization of new PcCr complexes spanning five oxidation states, including rare examples of crystalline reduced Pc-ring species emphasizes the broad redox activity and stability of phthalocyanine-based complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app