Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

New equation for calculating total interaction energy in one noncyclic ABC triad and new insights into cooperativity of noncovalent bonds.

In this work, a new equation consist of A⋅⋅⋅B, B⋅⋅⋅C, A⋅⋅⋅BC, and AB⋅⋅⋅C interactions is proposed for calculating the total interaction energy of noncyclic ABC triads. New equations are also proposed for calculating the changes in values of A⋅⋅⋅B and B⋅⋅⋅C interactions on the formation of triad from the corresponding dyads. The advantages of equations proposed here in comparison with many-body interaction energy approach are discussed. All proposed equations were tested in F3 MLi⋅⋅⋅NCH⋅⋅⋅HLH and F3 MLi⋅⋅⋅HLH⋅⋅⋅HCN (M = C, Si; L = Be, Mg) as well as H3 N⋅⋅⋅XY⋅⋅⋅HF (X, Y = F, Cl, Br) noncyclic A⋅⋅⋅B⋅⋅⋅C triads. The data show that the total cooperativity of triad correlates well with the sum of the changes in values of A⋅⋅⋅B and B⋅⋅⋅C interactions calculated through new equations proposed here. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app