Add like
Add dislike
Add to saved papers

Isolation of a genetically accessible thermophilic xylan degrading bacterium from compost.

BACKGROUND: Due to the finite nature of global oil resources we are now faced with the challenge of finding renewable resources to produce fuels and chemicals in the future. Lactic acid has great potential as a precursor for the production of bioplastics alternatives to conventional plastics. Efficient lactic acid fermentation from non-food lignocellulosic substrates requires pretreatment and saccharification to generate fermentable sugars. A fermentation process that requires little to no enzyme additions, i.e. consolidated bioprocessing would be preferred and requires lactic acid-producing organisms that have cellulolytic and/or hemicellulolytic activity.

RESULTS: To obtain candidate production strains we have enriched and isolated facultative anaerobic (hemi) cellulolytic bacterial strains from compost samples. By selecting for growth on both cellulose and xylan, 94 Geobacillus strains were isolated. Subsequent screening for lactic acid production was carried out from C6 and C5 sugar fermentations and a selection of the best lactic acid producers was made. The denitrifying Geobacillus thermodenitrificans T12 was selected for further research and was rendered genetically accessible. In fermentations on a mixture of glucose and xylose, a total of 20.3 g of lactic acid was produced with a yield of 0.94 g product/g sugar consumed. In addition, strain T12 is capable of direct conversion of beech wood xylan to mainly lactic acid in minimal media.

CONCLUSIONS: We have demonstrated that G. thermodenitrificans T12 is genetically accessible and produces lactic acid as its main fermentation product on glucose, xylose and a mixture thereof. Strain T12 was additionally used for the direct conversion of xylan to lactic acid. The genetic accessibility of the T12 strain provides a solid basis for the development of this strain into a host for consolidated bioprocessing of biomass to lactic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app