Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

TRAF3 deficiency promotes metabolic reprogramming in B cells.

Scientific Reports 2016 October 19
The adaptor protein TNF receptor-associated factor 3 (TRAF3) is a critical regulator of B lymphocyte survival. B cell-specific TRAF3 deficiency results in enhanced viability and is associated with development of lymphoma and multiple myeloma. We show that TRAF3 deficiency led to induction of two proteins important for glucose metabolism, Glut1 and Hexokinase 2 (HXK2). This was associated with increased glucose uptake. In the absence of TRAF3, anaerobic glycolysis and oxidative phosphorylation were increased in B cells without changes in mitochondrial mass or reactive oxygen species. Chemical inhibition of glucose metabolism or glucose deprivation substantially attenuated the enhanced survival of TRAF3-deficient B cells, with a decrease in the pro-survival protein Mcl-1. Changes in Glut1 and Mcl-1 levels, glucose uptake and B cell number in the absence of TRAF3 were all dependent upon NF-κB inducing kinase (NIK). These results indicate that TRAF3 deficiency suffices to metabolically reprogram B cells, a finding that improves our understanding of the role of TRAF3 as a tumor suppressor, and suggests potential therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app