Add like
Add dislike
Add to saved papers

Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae.

In the last years, applications for silver nanoparticles (Ag NPs) continue to increase together with the concerns about their potential input and hazards in aquatic ecosystems, where microalgae are key organisms. The aim of the present study was to assess the relative sensitivity of three marine microalgae species with differences in cell wall composition/structure exposed to Poly N-vinyl-2-pirrolidone/Polyethyleneimine (PVP/PEI) coated 5nm Ag NPs and uncoated 47nm Ag NP. As limited attention has been paid to the role of coating agents in NP toxicity, the effect of PVP/PEI alone was also evaluated. After 72h in artificial seawater, 47nm Ag NPs formed around 1400nm size aggregates while PVP/PEI coated 5nm Ag NPs reached around 90nm. Ag+ release in seawater was around 3% for 47nm Ag NPs and 30% for PVP/PEI coated 5nm Ag NPs. PVP/PEI coated 5nm Ag NP aggregates entrapped the algal cells in a network of heteroaggregates, while uncoated 47nm Ag NPs interacted to a lesser extent with algae. The concentration of PVP/PEI coated 5nm Ag NPs that exerted the median effect (EC50) on algae growth pointed out differences in algae sensitivity: T. suecica was about 10 times more sensitive than I. galbana and P. tricornutum. Further, the coating agent alone was as toxic to algae as PVP/PEI coated 5nm Ag NPs, suggesting that presence of the coating agent was the main driver of toxicity of coated NPs. Uncoated 47nm Ag NPs instead, showed similar toxicity towards algae although P. tricornutum was slightly less sensitive than T. suecica and I. galbana, which agrees with the presence of a resistant silicified cell wall in the diatom. The present work demonstrates differences in sensitivity of three marine microalgae, possibly related to their cell surface and size characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app