Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Novel Landscape of Long Non-Coding RNAs in Response to Human Foamy Virus Infection Characterized by RNA-Seq.

Human foamy virus (HFV) is a complex and unique retrovirus with the longest genomes among retroviruses that are used as vectors for gene therapy. Long non-coding RNAs (lncRNAs) are regarded as key regulators that are involved in diverse biological processes during viral infection. However, the role of lncRNAs in HFV infection remains unknown. In this study, we utilized next-generation sequencing to first characterize lncRNAs in 293T cells after HFV infection, evaluating length distribution, exon number distribution, volcano picture, and lncRNA class distribution. We identified 11,336 lncRNAs (4,729 upregulated lncRNAs and 6,588 downregulated lncRNAs) and 61,367 mRNAs (30,133 upregulated mRNAs and 31,220 downregulated mRNAs), which were differentially expressed in the HFV-infected 293T cells. Subsequently, six differentially expressed lncRNAs characterized using RNA-seq were confirmed by quantitative real-time polymerase chain reaction assays. Interestingly, Gene Ontology (GO)/Gene Ontology Tree Machine (GOTM) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analyses indicated that positive regulation of interleukin 8 (IL8) production and cytokine-cytokine receptor interaction might be involved in the functional enrichment of lncRNAs. Moreover, cis-acting and trans-acting regulatory networks show that NR_028036 may target the fas gene in a cis-acting manner and that ENST00000354838 may target the IL18 gene in a trans-acting manner. Overall, these results not only provide novel insights into the relationship between HFV and lncRNAs in the host response to infection but also have implications for the future wider application of HFV as a vector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app