Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1-40).

Histidine state (deprotonated, neutral, and protonated) is considered an important factor influencing the structural properties and aggregation mechanisms in amyloid β-peptides (Aβ), which are associated with the pathogenesis of Alzheimer's disease. Understanding the structural properties and aggregation mechanisms is a great challenge because two forms (the Nε -H or Nδ -H tautomer) can exist in the free neutral state of histidine. Here, replica-exchange molecular dynamics simulation was performed to elucidate the changes in structure and the mechanism of aggregation influenced by tautomeric behaviors of histidine in Aβ(1-40). Our results show that sheet-dominating conformations can be found in the His6(δ)-His13(δ)-His14(δ) (δδδ) isomer with significant antiparallel sheet structures between R5-D7 and L34-G38, as well as between L17-F20 and L34-G38, implying that a new aggregation mechanism may exist to promote the generation of oligomers and/or aggregates. This work is helpful in understanding the fundamental tautomeric behaviors of neutral histidine in the process of aggregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app