Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Temporal Profile of Circulating microRNAs after Global Hypoxia-Ischemia in Newborn Piglets.

BACKGROUND: There is a lack of reliable biomarkers that can identify and grade acute hypoxic-ischemic encephalopathy in newborns. MicroRNAs (miRNA) are short, non-coding strands of RNA that are released into the circulation in response to tissue stress and injury. Some miRNAs are highly tissue specific and thus may potentially be non-invasive biomarkers of neonatal hypoxic-ischemic brain injury.

OBJECTIVE: The aim of this study was to characterize the temporal expression of selected circulating miRNAs in a clinically relevant piglet model of neonatal hypoxia-ischemia (HI).

METHODS: A total of 13 anesthetized newborn piglets were randomized to either a control group (n = 5) or transient global HI group (n = 8). HI was achieved by ventilation with 8% oxygen until the point of severe acidosis (arterial base excess ≤-20 mmol/l) and/or hypotension (mean arterial blood pressure ≤20 mm Hg) was reached. Plasma was sampled at baseline, at the end of HI and 0.5, 3.5 and 9.5 h after HI. MiRNA expression was measured by qRT-PCR.

RESULTS: Compared to baseline, miR-374a increased during HI (p = 0.01), remained elevated at 0.5 h after HI (p = 0.02) and was downregulated at 9.5 h after HI (p = 0.02). MiR-210 increased during HI (p = 0.02) and rapidly normalized by 0.5 h after HI. MiR-124 and miR-125b did not exhibit significant alterations. Correlations were observed between miR-374a, arterial pH, base excess and lactate levels, and between miR-210 and pO2 (p < 0.05).

CONCLUSIONS: Our data suggest that miR-374a and miR-210 are important regulators in neonatal HI and might have a place as biomarkers in this setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app