Add like
Add dislike
Add to saved papers

Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO 2 @C Composite for Hydrogen Storage in NaAlH 4 .

Sodium alanate (NaAlH4 ) has attracted intense interest as a prototypical high-density hydrogen-storage material. However, poor reversibility and slow kinetics limit its practical applications. Herein, a nanocrystalline ZrO2 @C catalyst was synthesized by using Uio-66(Zr) as a precursor and furfuryl alcohol (FA) as a carbon source. The as-synthesized ZrO2 @C exhibits good catalytic activity for the dehydrogenation and hydrogenation of NaAlH4 . The NaAlH4 -7 wt % ZrO2 @C sample released hydrogen starting from 126 °C and reabsorbed it starting from 54 °C, and these temperatures are lower by 71 and 36 °C, respectively, relative to pristine NaAlH4 . At 160 °C, approximately 5.0 wt % of hydrogen was released from the NaAlH4 -7 wt % ZrO2 @C sample within 250 min, and the dehydrogenation product reabsorbed approximately 4.9 wt % within 35 min at 140 °C and 100 bar of hydrogen. The catalytic function of the Zr-based active species is believed to contribute to the significantly reduced operating temperatures and enhanced kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app