Add like
Add dislike
Add to saved papers

Correlation between the O 2p Orbital and Redox Reaction in LiMn 0.6 Fe 0.4 PO 4 Nanowires Studied by Soft X-ray Absorption.

The changes in the electronic structure of LiMn0.6 Fe0.4 PO4 nanowires during discharge processes were investigated by using ex situ soft X-ray absorption spectroscopy. The Fe L-edge X-ray absorption spectrum attributes the potential plateau at 3.45 V versus Li/Li+ of the discharge curve to a reduction of Fe3+ to Fe2+ . The Mn L-edge X-ray absorption spectra exhibit the Mn2+ multiplet structure throughout the discharge process, and the crystal-field splitting was slightly enhanced upon full discharge. The configuration-interaction full-multiplet calculation for the X-ray absorption spectra reveals that the charge-transfer effect from O 2p to Mn 3d orbitals should be considerably small, unlike that from the O 2p to Fe 3d orbitals. Instead, the O K-edge X-ray absorption spectrum shows a clear spectral change during the discharge process, suggesting that the hybridization of O 2p orbitals with Fe 3d orbitals contributes essentially to the reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app