Add like
Add dislike
Add to saved papers

Identification and bioinformatic analysis of dysregulated microRNAs in human oligodendroglial cells infected with borna disease virus.

MicroRNAs (miRNAs) are recognized as important regulators of gene expression via translational depression or mRNA degradation. Previously, dysregulated miRNAs have been found in neurodegenerative and neuropsychiatric disorders. Borna disease virus (BDV) is a neurotropic, negative single‑stranded RNA virus, which may be a cause of human neuropsychiatric disease. BDV is regarded as an ideal model to analyze the molecular mechanisms of mental disorders caused by viral infection. In the present study, 10 miRNAs were dysregulated in human oligodendrocytes (OL cells) infected with the BDV strain, Hu‑H1 (OL/BDV). The predicted target genes of those different miRNAs were closely associated with DNA binding, receptor activity, cytoplasm and membrane, biopolymer metabolic process and signal transduction, which were ranked highest using Gene Ontology (GO) analysis, and were predominantly involved in 'Immune system and adaptive Immune system pathways' on pathway analysis. Reverse transcription‑quantitative polymerase chain reaction analysis confirmed that seven miRNAs (miR‑1290, miR‑1908, miR‑146a‑5p, miR‑424‑5p, miR‑3676‑3p, miR‑296‑3p and miR‑7‑5p) were significantly downregulated in the OL/BDV cells, whereas two miRNAs (miR‑1244 and miR‑4521) showed no significant differences between the two groups. The present study revealed for the first time, to the best of our knowledge, the miRNA profile of BDV Hu‑H1‑infected human OL cells. Based on GO and pathway analyses, further investigation of the signaling processes in BDV‑infected oligodendrocytes may offer particular promise in improving understanding of the neuropathogenesis of BDV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app