Add like
Add dislike
Add to saved papers

Reduction of dynamin 1 in the hippocampus of aged mice is associated with the decline in hippocampal‑dependent memory.

Dynamin 1 is a known synaptic protein, which has is key in the presynaptic regulation of endocytosis. The present study investigated the association between age and the observed changes in Morris water maze performance, and immunoreactivity and protein levels of dynamin 1 in the mouse hippocampal formation. In addition, the effects of dynasore, an inhibitor of dynamin 1, on the hippocampal dependent memory were determined to elucidate the correlation between dynamin 1 and memory. In the training phase of the Morris water maze task, the mean escape latency of the aged group (24 months old) was significantly longer, compared with that of the adult group (4 months old), although the average swimming speed and the total distance traveled during the probe trial were similar in the two groups. In the aged group, the time spent locating the target platform was significantly longer and the time spent in the correct quadrant was significantly shorter, compared with those in the adult group. In the adult group, a moderate level of dynamin 1 was detected in the hippocampal CA1 and CA3 regions, and in the dentate gyrus. In the aged group, the immunoreactivity of dynamin 1 was almost eliminated in the CA3 region and the dentate gyrus. In addition, the protein levels of dynamin 1 in the brain were significantly lower in the aged group, compared with those in the adult group. The direct infusion of dynasore, significantly reduced the contextual memory, compared with that of animals in the vehicle‑treated group. These results suggested that dynamin 1 was susceptible to the aging process, and that a reduction in dynamin 1 may result in hippocampal‑dependent memory deficits by disrupting endocytosis and the release of neurotransmitters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app