Add like
Add dislike
Add to saved papers

High-Throughput Electrochemical Microfluidic Immunoarray for Multiplexed Detection of Cancer Biomarker Proteins.

ACS Sensors 2016 August 27
Microchip-based microfluidic electrochemical arrays hold great promise for fast, high-throughput multiplexed detection of cancer biomarker proteins at low cost per assay using relatively simple instrumentation. Here we describe an inexpensive high-throughput electrochemical array featuring 32 individually addressable microelectrodes that is further multiplexed with an 8-port manifold to provide 256 sensors. The gold electrode arrays were fabricated by wet-etching commercial gold compact discs (CD-R) followed by patterned insulation. A print-and-peel method was used to create sub-microliter hydrophobic wells surrounding each sensor to eliminate cross contamination during immobilization of capture antibodies. High-throughput analyses were realized using eight 32-sensor immunoarrays connected to the miniaturized 8-port manifold, allowing 256 measurements in <1 h. This system was used to determine prostate cancer biomarker proteins prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), interleukin-6 (IL-6), and platelet factor-4 (PF-4) in serum. Clinically relevant detection limits (0.05 to 2 pg mL(-1)) and 5-decade dynamic ranges (sub pg mL(-1) to well above ng mL(-1)) were achieved for these proteins utilizing precapture of analyte proteins on magnetic nanoparticles decorated with enzyme labels and antibodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app