Add like
Add dislike
Add to saved papers

Preparation and characteristic of gelatine/oxidized corn starch and gelatin/corn starch blend microspheres.

Combinations of gelatin (G) and oxidized corn starch (OCS) were explored as a new microcapsule composite for single droplet spray drying. The blending solutions property, gel time, transparency and viscosity of G/CS (corn starch) and G/OCS blend solutions were compared at different ratios (10:0;9:1;8:2;7:3;6:4;5:5) and concentrations(1%wt; 3%wt; 5%wt). The drying and dissolution behaviors of composite droplet have been studied using the single droplet drying technique. Possible reaction mechanisms in the composite blend were elucidated by SEM and FTIR techniques. Blends solutions of G/OCS showed longer Gel time, higher transparency and lower viscosity; further displayed faster dissolution rate than that of G/CS under similar conditions. This was attributed to the formed Schiff base between the aldehyde group of OCS and amino group of G which improved the compatibility between G and OCS. All results indicated that the composites could be prepared with excellent properties by G/OCS (6:4) which would overcome some disadvantage such as thermodynamic incompatibility and phase separation by G/CS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app