JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-130b promotes obesity associated adipose tissue inflammation and insulin resistance in diabetes mice through alleviating M2 macrophage polarization via repression of PPAR-γ.

Immunology Letters 2016 December
Inflammatory pathways play an important role in impaired glucose metabolism and insulin production. Adipose tissue inflammation is characterized by infiltration and expansion of macrophages, leading to type 2 diabetes (T2D). Macrophage polarization contributes to various inflammatory responses and cytokine production profiles. MiR-130b is involved in regulating immune response and metabolism. However, the specific role in macrophage polarization and glucose metabolism of T2D has not been reported. In this study, C57BL/6 mice were fed a high-fat diet to induce T2D mice model. The peritoneal macrophages were isolated, miR-130b and M1/M2 polarization was analyzed. Glucose tolerance was also detected. In addition, the relationship between miR-130b and the target gene was identified. We showed that mice fed on high-fat diet demonstrated significantly higher body weight and impaired glucose tolerance. In addition, the miR-130b level was up-regulated in macrophage of high-fat diet mice, which regulated M1/M2 polarization, adipose tissue inflammation and glucose tolerance. Furthermore, we identified PPAR-γ as a miR-130b target gene and regulated macrophage polarization. In summary, our findings demonstrated that miR-130b was a novel regulator of macrophage polarization and contributed to adipose tissue inflammation and insulin tolerance via repression of PPAR-γ. Furthermore, miR-130b represented a promising target for T2D therapy in the clinic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app