Add like
Add dislike
Add to saved papers

Diminished DYRK2 sensitizes hormone receptor-positive breast cancer to everolimus by the escape from degrading mTOR.

Cancer Letters 2017 January 2
Mammalian target of rapamycin (mTOR) inhibitor, everolimus, provides benefit for metastatic hormone receptor positive breast cancer after failure of the endocrine therapy. The present report highlights Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2 (DYRK2) as a predictive marker for everolimus sensitivity. The key node and KEGG pathway analyses revealed that mTORC1 pathway is activated in DYRK2-depleted cells. Everolimus was more effective in DYRK2-depleted cells compared with control cells. In xenograft model, everolimus treatment significantly inhibited tumor growth compared with vehicle or eribulin treatment. In clinical analysis, patients with low DYRK2 expression acquired longer treatment period and had higher clinical benefit rate than those with high DYRK2 expression (171 vs 82 days; P < 0.05 and 50% vs 12.5%, respectively). We further investigated the underlying mechanism by which DYRK2 regulates mTORC1 pathway. The ectopic expression of DYRK2 promoted phosphorylation of Thr631 for the ubiquitination and degradation of mTOR. DYRK2 expression levels may thus predict clinical responses to everolimus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app